A new discrepancy principle
نویسندگان
چکیده
منابع مشابه
A new discrepancy principle
The aim of this note is to prove a new discrepancy principle. The advantage of the new discrepancy principle compared with the known one consists of solving a minimization problem (see problem (2) below) approximately, rather than exactly, and in the proof of a stability result. To explain this in more detail, let us recall the usual discrepancy principle, which can be stated as follows. Consid...
متن کاملOn the discrepancy principle
A simple proof of the convergence of the variational regularization, with the regularization parameter, chosen by the discrepancy principle, is given for linear operators under suitable assumptions. It is shown that the discrepancy principle, in general, does not yield uniform with respect to the data convergence. An a priori choice of the regularization parameter is proposed and justified for ...
متن کاملDiscrepancy principle for DSM
Let Ay = f , A is a linear operator in a Hilbert space H, y ⊥ N (A) := {u : Au = 0}, R(A) := {h : h = Au, u ∈ D(A)} is not closed, f δ − f ≤ δ. Given f δ , one wants to construct u δ such that lim δ→0 u δ − y = 0. A version of the DSM (dynamical systems method) for finding u δ consists of solving the problem ˙ u δ (t) = −u δ (t) + T −1 a(t) A * f δ , u(0) = u 0 , (*) where T := A * A, T a := T ...
متن کاملDiscrepancy principle for DSM II
Let Ay = f , A is a linear operator in a Hilbert space H, y ⊥ N(A) := {u : Au = 0}, R(A) := {h : h = Au, u ∈ D(A)} is not closed, ‖fδ − f‖ ≤ δ. Given fδ, one wants to construct uδ such that limδ→0 ‖uδ − y‖ = 0. Two versions of discrepancy principles for the DSM (dynamical systems method) for finding the stopping time and calculating the stable solution uδ to the original equation Ay = f are for...
متن کاملOne Bit Sensing, Discrepancy, and Stolarsky Principle
Abstract. A sign-linear one bit map from the d-dimensional sphere S to the n-dimensional Hamming cube H = {−1,+1}n is given by x 7→ {sign(x · zj) : 1 ≤ j ≤ n} where {zj} ⊂ S. For 0 < δ < 1, we estimate N(d, δ), the smallest integer n so that there is a sign-linear map which has the δ-restricted isometric property, where we impose normalized geodesic distance on S, and Hamming metric on H. Up to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2005
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2005.01.062