A new discrepancy principle

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new discrepancy principle

The aim of this note is to prove a new discrepancy principle. The advantage of the new discrepancy principle compared with the known one consists of solving a minimization problem (see problem (2) below) approximately, rather than exactly, and in the proof of a stability result. To explain this in more detail, let us recall the usual discrepancy principle, which can be stated as follows. Consid...

متن کامل

On the discrepancy principle

A simple proof of the convergence of the variational regularization, with the regularization parameter, chosen by the discrepancy principle, is given for linear operators under suitable assumptions. It is shown that the discrepancy principle, in general, does not yield uniform with respect to the data convergence. An a priori choice of the regularization parameter is proposed and justified for ...

متن کامل

Discrepancy principle for DSM

Let Ay = f , A is a linear operator in a Hilbert space H, y ⊥ N (A) := {u : Au = 0}, R(A) := {h : h = Au, u ∈ D(A)} is not closed, f δ − f ≤ δ. Given f δ , one wants to construct u δ such that lim δ→0 u δ − y = 0. A version of the DSM (dynamical systems method) for finding u δ consists of solving the problem ˙ u δ (t) = −u δ (t) + T −1 a(t) A * f δ , u(0) = u 0 , (*) where T := A * A, T a := T ...

متن کامل

Discrepancy principle for DSM II

Let Ay = f , A is a linear operator in a Hilbert space H, y ⊥ N(A) := {u : Au = 0}, R(A) := {h : h = Au, u ∈ D(A)} is not closed, ‖fδ − f‖ ≤ δ. Given fδ, one wants to construct uδ such that limδ→0 ‖uδ − y‖ = 0. Two versions of discrepancy principles for the DSM (dynamical systems method) for finding the stopping time and calculating the stable solution uδ to the original equation Ay = f are for...

متن کامل

One Bit Sensing, Discrepancy, and Stolarsky Principle

Abstract. A sign-linear one bit map from the d-dimensional sphere S to the n-dimensional Hamming cube H = {−1,+1}n is given by x 7→ {sign(x · zj) : 1 ≤ j ≤ n} where {zj} ⊂ S. For 0 < δ < 1, we estimate N(d, δ), the smallest integer n so that there is a sign-linear map which has the δ-restricted isometric property, where we impose normalized geodesic distance on S, and Hamming metric on H. Up to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2005

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2005.01.062